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ABSTRACT

Comparisons are made of Rayleigh wave spectra for
NTS explosions and Nevada earthquakes and for a limited
number of teleseismic explosions and earthquakes
recorded in North America. For a given combination of
source and receiver location, the exrlosions con-
sistently exhibit the same spectral shape cver a
significant range of magnitudes while spectral shapes
for earthquakes commonly vary in a manner that appears
independent of magnitude, with some earthquake shapes
closely matching those of explosions. The spectral
shapes for explosions were commonly observed to vary
; significantly from station to station at comparabhle
. i distance ranges, probably because of path and receiver
' site effects., We conclude that neither Rayleigh
spectral shape nor symmetry of raw surface wave radia-
tion patterns is likely to be a reliable discriminant
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INTRODUCTION

Because the relative excitation of Rayleigh waves
and P waves as reflected even in simple M, vs m, rela-
tionships constitutes the basis for one of the most
powerful seismic discriminants, it is important to
examine the variability of the spectral excitation to
be expected for earthquakes znd explosions. Spectral
shape (spectral splitting) and symmetry of Rayleigh
wave radiation patterns have also been suggested as
further diagnostic aids, In the following discussion of
these criteria, spectra will be presented for Nevada
earthquakes and explosions observed at regional and
near-regional distances as well as spectra for a
lirited number of teleseismic explosions and earthquakes.,

Table I gives the pertinent epicentral information
and magnitude estimates for all the earthquakes and
explosions used in this study. Figure 1 shows the
composite M, vs my plot for the entire data set of
Table I. The body wave magnitudes are NOS values and
the MS values include the standard Gutenberg distance
correction., Figure 2 shows MS Vs my data for the subset
of Nevada earthquakes and NTS explosions for which
adjusted MS and my values are available., In this plot
the adjusted m, values have been determined using
Evernden's empirical distance corrections for stations
at regional (non-teleseismic) distances (Evernden, 1967)
and the adjusted MS values include von Seggern's distance
correction factors for stations at less than 15° distance

(von Seggern, 1970): The lines shown are the mean




Ms vs my curves for Nevada earthquakes and NTS explo-
sions, ard the best discriminant line separating the
two populations as given by Lambert and Alexander (1971)
for larger data sets of explosions and earthquakes in
Nevada,
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RESULTS

Figures 3 and 4 show nuclear explosion spectra and
Nevada earthquake spectra at BMO, which is at an epi-
central distance of between 860 and 881 km for all
events. The explosion spectra are very similar in shape
(except for PAR, which was a small event with a poor
signal-to-noise ratio over the entire frequency band
considered). The earthquake spectra shown in Figure 4
are from events within a local source region (as
indicated in Table I). Their spectra are less consistent
than those for the explosion, showing a double-peaked
structure and no systematic change with magnitude. Note
that spectral splitting would not work well on these
spectra unless the spectral windows are carefully
selected,

Figure 5 shows explosion spectra for UBO at a
distance of around 665 km., Again there is general
consistency among events but the spectral shape at UBO
is distinctly different than for the same events
observed at BMO (Figure 3) or TFO (Figure 8), indicating
a strong effect of propagation path and site response on
the Rayleigh wave spectra.

Note in this connection that even though TFO is
more than 300 km closer to the source than BMO, the
spectral peak at TFO occurs at a lower frequency
(.05 - .06 Hz vs .06 - .07 Hz) for the same set of
events. The spectra at HL-ID (Figure 6) at 738 km
distance are peaked at a still higher frequency (~.07 Hz)
whereas the spectrum at LC-NM (Figure 7), at ~1000 km




distance, peaks between .05 and .06 Hz. It appears from
these data that the higher frequencies are more rapidly
attenuated toward the southeast from NTS than toward
the north. Although asymmetry in radiation of energy
from the source may account for some of this variation,
the similarity in spectral shape from shot to shot for
differing yields argues against the variations being
due primarily to a source effect.

In Figures 8 and 9 we compare explosions and earth-
quakes at TFO in the distance range of 427-543 km. Again

there is consistency for the explosions but not for the
earthquakes,

Figure 10 from Evernden et al, (1971) shows still
another example of the similarity of explosion spectral
shapes for Rayleigh waves when the path from source to
receiver is nearly the same. The events shown were all
located on Pahute Mesa and were recorded at Berkley,
California, At higher frequencies even the detailed
shape of the observed spectra is replicated from event
to event, including that of PIPKIN which was about
.8 magnitude.units smaller than the others (Table I),

Overall, these data suggest that the Rayleigh wave
spectra of explosions for a given source region-station
combination can be expected to remain similar to one
another for all events, while the earthquake spectra can
vary significantly in shape at any magnitude, with
some being similar to the explosions. This general lack
of similarity for earthquake spectra is to be expected
if the events have different source parameters (e.g.
fault strike, dip, slip, depth), as von Seggern (1969, 1970)
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has pointed out. This result implies that spectral shape
in general may not be a very reliable discriminant
between earthquakes and explosions, although it possibly
could be used to identify some earthquakes if the
spectral shapes observed are dissimilar enough from
those of explosions from a given source region. On the
other hand, it should be noted that even though spectral
shapes might coincide for earthquakes and explosions,
observed MS Vs my data imply that the Rayleigh excita-
tion level for a given m, event averaged over azimuth
will be greater for an earthquake than for an explosica
(Figure 2). The danger is, of course, that with only a
few stations or with poor azimuthal coverage, radiation
patterns and similar spectral shapes may combine to give
low Rayleigh wave signal levels for earthquakes at all
the available stations, thereby causing the earthquake
to be mistaken for an explosion.

In Figures 11 and 12 we compare the spectra of
three teleseismic events recorded at KN-UT and LC-NM.
The observed spectral shapes are very dissimilar at
KN-UT (Figure 11), while two of the same events are
similar at LC-NM. These differences result from a
combination of path and source effects that cannot
easily be separated. In any case, we conclude that
earthquakes 1rom the Kamchatka area do not seem to have
consistent Rayleigh wave spectral shapes from event to

event. Also, there is no systematic variation of spectral
shape with magnitude; again this is to be expected

because of the dominant influence of fault parameters

on spectral shape of earthquakes (von Seggern 1969, 1970),
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In Figures 13 through 18 we compare the LONG SHOT
and MILROW spectra recorded at different LRSM stations
with spectra from various earthquakes of comparable
magnitudes located in the same source region, It is
important to note that LONG SHOT and MILROW consistently
have the same spectral shape at each station, although
there are significant variations in shape from station
to station due principally to propagation and site
effects.

Compare KN-UT (Figure 16), PG-BC (Figure 17) and
RK-ON (Figure 18), for example. The earthquakes show
no consistent pattern, some being similar at a given
station (presumably implying a similar source mechanism)
and others being significantly different in spectral
shape. RK-ON (Figure 18) is an example where the explo-
sion spectrum peaks at a considerably lower frequency

than earthquakes of comparable magnitude from the same
region, which means that spectral splitting would fail
as a diagnostic in this instance. Since for each station
the source region is the same, assuring that path
effects are in common for these events, the spectral
differences observed must represent actual differences
in source mechanism for the earthquakes,

Because the observed spectral shapes of explosin.:
have been shown to diffe: from station to station at
comparable distance ranges but at different azimuths,
this will appear as a frequency-dependent radiation
pattern, which is normally indicative of an earthquake
type of source mechanism (von Seggern and Lambert 1969).
Thus we conclude that path and site effects must be




come is to use a reference event approach whereby the
spectra are normalized by the observed spectrum of a
well-documented reference event from the same source
region, 30 that transmission effects are cancelled,

2 .

| properly accounted for before radiation patterns of
Rayleigh waves can be used as diagnostic aids to
identify explosions, One way this problem can be over-




CONCLUSIONS

1. For a given combination of source region and
station location, explosion spectra were observed
consistently to have the same spectral shape even for
different magnitude events,

2. Spectral shapes observed for explosions commonly
vary significantly from station to station at comparable
distances due to path and site effects; in turn this
produces an apparent radiation pattern that is not
associated with the source,

3. Earthquake spectra at given stations commonly
vary in shape for different events of comparable magni-
tude within the same source region; this conforms to
what is predicted theoretically,

4. Because the paths to individual statiors were
common for the cases investigated, the observed spectral
differences for earthquakes indicate different source
mechanisms for events within the same source region at
NTS, in the Aleutians, and in Kamchatka,

5. There appears to be no consistent variation in
Rayleigh wave spectral shape with magnitude (mb) for
earthquakes; this is in accordance with theoretical
predictions for earthquake sources.

6. Spectral splitting at a single station is not
likely to be a reliable discriminant, although events
with spectra different from known explosion spectra
possibly can be identified as earthquakes; however,
positive identification of explosions may fail
completely, because earthquakes were observed to produce




Rayleigh wave spectra with shapes closely matching those
for explosions in the same source region,

7. Path and receiver site effects on the spectra
must be properly accounted for before the frequency 1
dependence of Rayleigh wave radiation patterns can be
,  used as a diagnostic, 7

b

8. A reference event approach is recommended for -
spectral comparisons in order to eliminate propagation
and site effects and to isolate source effects.
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EXPLOSIONS
EARTHQUAKES

EXPLOSIONS, LESS ThAN
3 STATIONS USEO IN
CALCULATIONS

EARTHQUAKES, LESS THAN
3 STATIONS USEO IN
CALCULATIONS

Figure 1. Mg (Gutenburg) vs unified mp or mp (NOS) for events
used in this study. Event numbers refer to events listed in
Table I,




ADJUSTED M,

50—
a0f— —

21

[#]

/ EXPLOSIONS

O EARTHQUAKES
o EXPLOSIONS, LESS THAN

30 & 3 STATIONS USED IN

CALCULATIONS

2.5 35 a5 e =
ADJUSTED m), ,

Figure 2. Mg adjusted vs mp adjusted for a subset of Nevada
earthquakes and NTS explosions given in Table I. Numbers refer
to event numbers in Table I. Lines show mean curves and the
best discriminant line for Nevada earthquakes and NTS explo-
sions as determined by Lambert and Alexander (1971).
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Figure 10. Composite of vertical velocity spectra for four
explosions on Pahute Mesa (Jorum, Boxcar, Pipkin, and
Benham). Vertical axis gives relative velocity on a linear
scale, and each curve has a different absolute scaling value.
The curves were so plotted to show Clearly the extreme degree
of similarity between the spectra of different explosions
(from Evernden et al., 1971),
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